Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1345363, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481440

RESUMO

X-linked acrogigantism (X-LAG) is a rare form of pituitary gigantism that is associated with growth hormone (GH) and prolactin-secreting pituitary adenomas/pituitary neuroendocrine tumors (PitNETs) that develop in infancy. It is caused by a duplication on chromosome Xq26.3 that leads to the misexpression of the gene GPR101, a constitutively active stimulator of pituitary GH and prolactin secretion. GPR101 normally exists within its own topologically associating domain (TAD) and is insulated from surrounding regulatory elements. X-LAG is a TADopathy in which the duplication disrupts a conserved TAD border, leading to a neo-TAD in which ectopic enhancers drive GPR101 over-expression, thus causing gigantism. Here we trace the full diagnostic and therapeutic pathway of a female patient with X-LAG from 4C-seq studies demonstrating the neo-TAD through medical and surgical interventions and detailed tumor histopathology. The complex nature of treating young children with X-LAG is illustrated, including the achievement of hormonal control using a combination of neurosurgery and adult doses of first-generation somatostatin analogs.


Assuntos
Acromegalia , Doenças Genéticas Ligadas ao Cromossomo X , Gigantismo , Hormônio do Crescimento Humano , Neoplasias Hipofisárias , Adulto , Humanos , Criança , Feminino , Pré-Escolar , Gigantismo/genética , Gigantismo/terapia , Gigantismo/metabolismo , Acromegalia/patologia , Hormônio do Crescimento/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Neoplasias Hipofisárias/complicações , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia
3.
Liver Int ; 44(2): 518-531, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38010911

RESUMO

BACKGROUND & AIMS: Intrahepatic cholangiocarcinoma (iCCA) is a primary liver tumour, characterized by poor prognosis and lack of effective therapy. The cytoskeleton protein Filamin A (FLNA) is involved in cancer progression and metastasis, including primary liver cancer. FLNA is cleaved by calpain, producing a 90 kDa fragment (FLNACT ) that can translocate to the nucleus and inhibit gene transcription. We herein aim to define the role of FLNA and its cleavage in iCCA carcinogenesis. METHODS & RESULTS: We evaluated the expression and localization of FLNA and FLNACT in liver samples from iCCA patients (n = 82) revealing that FLNA expression was independently correlated with disease-free survival. Primary tumour cells isolated from resected iCCA patients expressed both FLNA and FLNACT , and bulk RNA sequencing revealed a significant enrichment of cell proliferation and cell motility pathways in iCCAs with high FLNA expression. Further, we defined the impact of FLNA and FLNACT on the proliferation and migration of primary iCCA cells (n = 3) and HuCCT1 cell line using silencing and Calpeptin, a calpain inhibitor. We observed that FLNA silencing decreased cell proliferation and migration and Calpeptin was able to reduce FLNACT expression in both the HuCCT1 and iCCA cells (p < .05 vs. control). Moreover, Calpeptin 100 µM decreased HuCCT1 and primary iCCA cell proliferation (p <.00001 vs. control) and migration (p < .05 vs. control). CONCLUSIONS: These findings demonstrate that FLNA is involved in human iCCA progression and calpeptin strongly decreased FLNACT expression, reducing cell proliferation and migration.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias Hepáticas , Humanos , Filaminas/genética , Colangiocarcinoma/patologia , Neoplasias Hepáticas/genética , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia
4.
Endocrine ; 83(3): 810-823, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37845576

RESUMO

PURPOSE: Neuroendocrine neoplasms (NENs) are tumors that arise from cells of the endocrine system and are most common in the gastrointestinal tract, the pancreas, and the lungs. Their incidence is rapidly increasing and the therapeutic options available are limited. METHODS: Since the immune system can interfere with tumor growth and response to therapy, using flow cytometry we investigated the immunophenotype in samples of peripheral blood leukocytes from patients with pancreatic (Pan-NENs) and pulmonary NENs (Lung-NENs). Moreover, we performed a multiplex analysis of 13 key cytokines and growth factors essential for the immune response in the plasma of NEN patients and controls. RESULTS: Patients presented with a higher percentage of granulocytes, a lower percentage of lymphocytes, and an increase in the granulocytes to lymphocytes ratio compared to healthy donors. These alterations were more marked in patients with metastasis. Somatostatin analogs (SSAs) restored the immunophenotype of patients to that seen in healthy donors. Finally, Pan-NEN patients showed a higher plasma concentration of IP-10, MCP-1, and IL-8 compared to healthy donors, suggesting a potential role for these cytokines as diagnostic biomarkers. CONCLUSION: This study highlighted differences in the immunophenotype of patients with Pan- and Lung-NENs compared to healthy individuals; these alterations were partially restored by therapy.


Assuntos
Carcinoma Neuroendócrino , Neoplasias Gastrointestinais , Neoplasias Pulmonares , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Humanos , Tumores Neuroendócrinos/patologia , Somatostatina , Neoplasias Pancreáticas/patologia , Neoplasias Gastrointestinais/patologia
5.
J Mol Graph Model ; 127: 108676, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38006624

RESUMO

GPR101 is a G protein-coupled receptor (GPCR) implicated in a rare form of genetic gigantism known as X-linked acrogigantism, or X-LAG. In particular, X-LAG patients harbor microduplications in the long arm of the X-chromosome that invariably include the GPR101 gene. Duplications of the GPR101 gene lead to the formation of a new chromatin domain that causes over-expression of the receptor in the pituitary tumors of the patients. Notably, GPR101 is a constitutively active receptor, which stimulates cells to produce the second messenger cyclic AMP (cAMP) in the absence of ligands. Moreover, GPR101 was recently reported to constitutively activate not only the cAMP pathway via Gs, but also other G protein subunits (Gq/11 and G12/13). Hence, chemicals that block the constitutive activity of GPR101, known as inverse agonists, have the potential to be useful for the development of pharmacological tools for the treatment of X-LAG. In this study, we provide structural insights into the putative structure of GPR101 based on in-house built homology models, as well as third party models based on the machine learning methods AlphaFold and AlphaFold-Multistate. Moreover, we report a molecular dynamics study, meant to further probe the constitutive activity of GPR101. Finally, we provide a structural comparison with the closest GPCRs, which suggests that GPR101 does not share their natural ligands. While this manuscript was under review, cryo-electron microscopy structures of GPR101 were reported. These structures are expected to enable computer-aided ligand discovery efforts targeting GPR101.


Assuntos
Acromegalia , Gigantismo , Humanos , Gigantismo/genética , Gigantismo/patologia , Microscopia Crioeletrônica , Agonismo Inverso de Drogas , Acromegalia/genética , Acromegalia/patologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/química
6.
Front Endocrinol (Lausanne) ; 14: 1305606, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075079

RESUMO

Introduction: Germline loss-of-function variants in PAM, encoding peptidylglycine α-amidating monooxygenase (PAM), were recently discovered to be enriched in conditions of pathological pituitary hypersecretion, specifically: somatotrophinoma, corticotrophinoma, and prolactinoma. PAM is the sole enzyme responsible for C-terminal amidation of peptides, and plays a role in the biosynthesis and regulation of multiple hormones, including proopiomelanocortin (POMC). Methods: We performed exome sequencing of germline and tumour DNA from 29 individuals with functioning pituitary adenomas (12 prolactinomas, 10 thyrotrophinomas, 7 cyclical Cushing's disease). An unfiltered analysis was undertaken of all PAM variants with population prevalence <5%. Results: We identified five coding, non-synonymous PAM variants of interest amongst seven individuals (six germline, one somatic). The five variants comprised four missense variants and one truncating variant, all heterozygous. Each variant had some evidence of pathogenicity based on population prevalence, conservation scores, in silico predictions and/or prior functional studies. The yield of predicted deleterious PAM variants was thus 7/29 (24%). The variants predominated in individuals with thyrotrophinomas (4/10, 40%) and cyclical Cushing's disease (2/7, 29%), compared to prolactinomas (1/12, 8%). Conclusion: This is the second study to demonstrate a high yield of suspected loss-of-function, predominantly germline, PAM variants in individuals with pathological pituitary hypersecretion. We have extended the association with corticotrophinoma to include the specific clinical entity of cyclical Cushing's disease and demonstrated a novel association between PAM variants and thyrotrophinoma. PAM variants might act as risk alleles for pituitary adenoma formation, with a possible genotype-phenotype relationship between truncating variants and altered temporal secretion of cortisol.


Assuntos
Adenoma Hipofisário Secretor de ACT , Adenoma , Hipersecreção Hipofisária de ACTH , Neoplasias Hipofisárias , Prolactinoma , Humanos , Adenoma Hipofisário Secretor de ACT/genética , Adenoma Hipofisário Secretor de ACT/complicações , Adenoma/patologia , Hipersecreção Hipofisária de ACTH/genética , Hipersecreção Hipofisária de ACTH/complicações , Neoplasias Hipofisárias/patologia , Prolactinoma/genética , Prolactinoma/complicações
7.
Horm Metab Res ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065537

RESUMO

Cushing's disease (CD) is caused by rare pituitary corticotroph tumors that lead to corticotropin (ACTH) excess. Variants in FAF1, a pro-apoptotic protein involved in FAS-induced cell death, have been implicated in malignant disorders but the involvement of FAF1 in pituitary tumors has not been studied. Genetic data from patients with CD were reviewed for variants in FAF1 gene. Knockout mice (KO) were followed to assess the development of any pituitary disorder or cortisol excess. AtT-20 cells were used to study the effects of the variants of interest on ACTH secretion and cell proliferation. Three variants of interest were identified in 5 unique patients, two of which had rare allele frequency in genomic databases and were predicted to be likely pathogenic. KO mice were followed over time and no difference in their length/weight was noted. Additionally, KO mice did not develop any pituitary lesions and retained similar corticosterone secretion with wild type. AtT-20 cells transfected with FAF1 variants of interest or WT expression plasmids showed no significant difference in cell death or Pomc gene expression. However, in silico prediction models suggested significant differences in secondary structures of the produced proteins. In conclusion, we identified two FAF1 variants in patients diagnosed with CD with a potential pathogenic effect on the protein function and structure. Our in vitro and in vivo studies did not reveal an association of FAF1 defects with pituitary tumorigenesis and further studies may be needed to understand any association.

8.
Front Endocrinol (Lausanne) ; 14: 1166076, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37388215

RESUMO

Introduction: Pituitary adenomas (PAs) are common, usually benign tumors of the anterior pituitary gland which, for the most part, have no known genetic cause. PAs are associated with major clinical effects due to hormonal dysregulation and tumoral impingement on vital brain structures. PAM encodes a multifunctional protein responsible for the essential C-terminal amidation of secreted peptides. Methods: Following the identification of a loss-of-function variant (p.Arg703Gln) in the peptidylglycine a-amidating monooxygenase (PAM) gene in a family with pituitary gigantism, we investigated 299 individuals with sporadic PAs and 17 familial isolated PA kindreds for PAM variants. Genetic screening was performed by germline and tumor sequencing and germline copy number variation (CNV) analysis. Results: In germline DNA, we detected seven heterozygous, likely pathogenic missense, truncating, and regulatory SNVs. These SNVs were found in sporadic subjects with growth hormone excess (p.Gly552Arg and p.Phe759Ser), pediatric Cushing disease (c.-133T>C and p.His778fs), or different types of PAs (c.-361G>A, p.Ser539Trp, and p.Asp563Gly). The SNVs were functionally tested in vitro for protein expression and trafficking by Western blotting, splicing by minigene assays, and amidation activity in cell lysates and serum samples. These analyses confirmed a deleterious effect on protein expression and/or function. By interrogating 200,000 exomes from the UK Biobank, we confirmed a significant association of the PAM gene and rare PAM SNVs with diagnoses linked to pituitary gland hyperfunction. Conclusion: The identification of PAM as a candidate gene associated with pituitary hypersecretion opens the possibility of developing novel therapeutics based on altering PAM function.


Assuntos
Doenças da Hipófise , Neoplasias Hipofisárias , Criança , Humanos , Variações do Número de Cópias de DNA , Hipófise , Neoplasias Hipofisárias/genética , Oxigenases de Função Mista
9.
medRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36711613

RESUMO

Pituitary adenomas (PAs) are common, usually benign tumors of the anterior pituitary gland which, for the most part, have no known genetic cause. PAs are associated with major clinical effects due to hormonal dysregulation and tumoral impingement on vital brain structures. Following the identification of a loss-of-function variant (p.Arg703Gln) in the PAM gene in a family with pituitary gigantism, we investigated 299 individuals with sporadic PAs and 17 familial isolated pituitary adenomas kindreds for PAM variants. PAM encodes a multifunctional protein responsible for the essential C-terminal amidation of secreted peptides. Genetic screening was performed by germline and tumor sequencing and germline copy number variation (CNV) analysis. No germline CNVs or somatic single nucleotide variants (SNVs) were identified. We detected seven likely pathogenic heterozygous missense, truncating, and regulatory SNVs. These SNVs were found in sporadic subjects with GH excess (p.Gly552Arg and p.Phe759Ser), pediatric Cushing disease (c.-133T>C and p.His778fs), or with different types of PAs (c.-361G>A, p.Ser539Trp, and p.Asp563Gly). The SNVs were functionally tested in vitro for protein expression and trafficking by Western blotting, for splicing by minigene assays, and for amidation activity in cell lysates and serum samples. These analyses confirmed a deleterious effect on protein expression and/or function. By interrogating 200,000 exomes from the UK Biobank, we confirmed a significant association of the PAM gene and rare PAM SNVs to diagnoses linked to pituitary gland hyperfunction. Identification of PAM as a candidate gene associated with pituitary hypersecretion opens the possibility of developing novel therapeutics based on altering PAM function.

10.
J Clin Med ; 11(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35456261

RESUMO

Overgrowth due to growth hormone (GH) excess affects approximately 10% of patients with neurofibromatosis type 1 (NF1) and optic pathway glioma (OPG). Our aim is to describe the clinical, biochemical, pathological, and genetic features of GH excess in a retrospective case series of 10 children and adults with NF1 referred to a tertiary care clinical research center. Six children (median age = 4 years, range of 3−5 years), one 14-year-old adolescent, and three adults (median age = 42 years, range of 29−52 years) were diagnosed with NF1 and GH excess. GH excess was confirmed by the failure to suppress GH (<1 ng/mL) on oral glucose tolerance test (OGTT, n = 9) and frequent overnight sampling of GH levels (n = 6). Genetic testing was ascertained through targeted or whole-exome sequencing (n = 9). Five patients (all children) had an OPG without any pituitary abnormality, three patients (one adolescent and two adults) had a pituitary lesion (two tumors, one suggestive hyperplasia) without an OPG, and two patients (one child and one adult) had a pituitary lesion (a pituitary tumor and suggestive hyperplasia, respectively) with a concomitant OPG. The serial overnight sampling of GH levels in six patients revealed abnormal overnight GH profiling. Two adult patients had a voluminous pituitary gland on pituitary imaging. One pituitary tumor from an adolescent patient who harbored a germline heterozygous p.Gln514Pro NF1 variant stained positive for GH and prolactin. One child who harbored a heterozygous truncating variant in exon 46 of NF1 had an OPG that, when compared to normal optic nerves, stained strongly for GPR101, an orphan G protein-coupled receptor causing GH excess in X-linked acrogigantism. We describe a series of patients with GH excess and NF1. Our findings show the variability in patterns of serial overnight GH secretion, somatotroph tumor or hyperplasia in some cases of NF1 and GH excess. Further studies are required to ascertain the link between NF1, GH excess and GPR101, which may aid in the characterization of the molecular underpinning of GH excess in NF1.

11.
Front Endocrinol (Lausanne) ; 13: 773143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355569

RESUMO

Background: The fourth type of multiple endocrine neoplasia (MEN) is known as a rare variant of MEN presenting a MEN1-like phenotype and originating from a germline mutation in CDKN1B. However, due to the small number of cases documented in the literature, the peculiar clinical features of MEN4 are still largely unknown, and clear indications about the clinical management of these patients are currently lacking. In order to widen our knowledge on MEN4 and to better typify the clinical features of this syndrome, we present two more cases of subjects with MEN4, and through a review of the current literature, we provide some possible indications on these patients' management. Case Presentation: The first report is about a man who was diagnosed with a metastatic ileal G2-NET at the age of 34. Genetic analysis revealed the mutation p.I119T (c.356T>C) of exon 1 of CDKN1B, a mutation already reported in the literature in association with early-onset pituitary adenomas. The second report is about a 76-year-old woman with a multifocal pancreatic G1-NET. Genetic analysis identified the CDKN1B mutation c.482C>G (p.S161C), described here for the first time in association with MEN4 and currently classified as a variant of uncertain significance. Both patients underwent biochemical and imaging screening for MEN1-related diseases without any pathological findings. Conclusions: According to the cases reported in the literature, hyperparathyroidism is the most common clinical feature of MEN4, followed by pituitary adenoma and neuroendocrine tumors. However, MEN4 appears to be a variant of MEN with milder clinical features and later onset. Therefore, these patients might need a different and personalized approach in clinical management and a peculiar screening and follow-up strategy.


Assuntos
Adenoma , Neoplasia Endócrina Múltipla , Neoplasias Hipofisárias , Adenoma/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Mutação em Linhagem Germinativa , Humanos , Neoplasia Endócrina Múltipla/diagnóstico , Neoplasia Endócrina Múltipla/genética , Neoplasia Endócrina Múltipla/patologia , Mutação , Neoplasias Hipofisárias/patologia
12.
Am J Hum Genet ; 109(4): 553-570, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35202564

RESUMO

X-linked acrogigantism (X-LAG) is the most severe form of pituitary gigantism and is characterized by aggressive growth hormone (GH)-secreting pituitary tumors that occur in early childhood. X-LAG is associated with chromosome Xq26.3 duplications (the X-LAG locus typically includes VGLL1, CD40LG, ARHGEF6, RBMX, and GPR101) that lead to massive pituitary tumoral expression of GPR101, a novel regulator of GH secretion. The mechanism by which the duplications lead to marked pituitary misexpression of GPR101 alone was previously unclear. Using Hi-C and 4C-seq, we characterized the normal chromatin structure at the X-LAG locus. We showed that GPR101 is located within a topologically associating domain (TAD) delineated by a tissue-invariant border that separates it from centromeric genes and regulatory sequences. Next, using 4C-seq with GPR101, RBMX, and VGLL1 viewpoints, we showed that the duplications in multiple X-LAG-affected individuals led to ectopic interactions that crossed the invariant TAD border, indicating the existence of a similar and consistent mechanism of neo-TAD formation in X-LAG. We then identified several pituitary active cis-regulatory elements (CREs) within the neo-TAD and demonstrated in vitro that one of them significantly enhanced reporter gene expression. At the same time, we showed that the GPR101 promoter permits the incorporation of new regulatory information. Our results indicate that X-LAG is a TADopathy of the endocrine system in which Xq26.3 duplications disrupt the local chromatin architecture forming a neo-TAD. Rewiring GPR101-enhancer interaction within the new regulatory unit is likely to cause the high levels of aberrant expression of GPR101 in pituitary tumors caused by X-LAG.


Assuntos
Acromegalia , Doenças Genéticas Ligadas ao Cromossomo X , Gigantismo , Neoplasias Hipofisárias , Acromegalia/complicações , Acromegalia/genética , Acromegalia/patologia , Pré-Escolar , Cromatina/genética , Comunicação , Proteínas de Ligação a DNA/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Gigantismo/complicações , Gigantismo/genética , Gigantismo/patologia , Humanos , Neoplasias Hipofisárias/genética , Receptores Acoplados a Proteínas G/genética , Fatores de Transcrição/genética
13.
Mol Cell Endocrinol ; 520: 111091, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33248229

RESUMO

We recently described X-linked acrogigantism (X-LAG), a condition of early childhood-onset pituitary gigantism associated with microduplications of the GPR101 receptor. The expression of GPR101 in hyperplastic pituitary regions and tumors in X-LAG patients, and GPR101's normally transient pituitary expression during fetal development, suggest a role in the regulation of growth. Nevertheless, little is still known about GPR101's physiological functions, especially during development. By using zebrafish models, we investigated the role of gpr101 during embryonic development and somatic growth. Transient ectopic gpr101 expression perturbed the embryonic body plan but did not affect growth. Loss of gpr101 led to a significant reduction in body size that was even more pronounced in the absence of maternal transcripts, as well as subfertility. These changes were accompanied by gastrulation and hypothalamic defects. In conclusion, both gpr101 loss- and gain-of-function affect, in different ways, fertility, embryonic patterning, growth and brain development.


Assuntos
Acromegalia/genética , Desenvolvimento Embrionário/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Gigantismo/genética , Receptores Acoplados a Proteínas G/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/genética , Acromegalia/complicações , Animais , Feminino , Fertilização/genética , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento , Gigantismo/complicações , Hipotálamo/patologia , Mutação/genética , Óvulo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/genética , Temperatura , Transcriptoma/genética , Regulação para Cima/genética , Proteínas de Peixe-Zebra/metabolismo , Zigoto/metabolismo
14.
Pituitary ; 24(2): 252-261, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33156432

RESUMO

PURPOSE: Non-syndromic pituitary gigantism (PG) is a very rare disease. Aryl hydrocarbon receptor-interacting protein (AIP) and G protein-coupled receptor 101 (GPR101) genetic abnormalities represent important etiologic causes of PG and may account for up to 40% of these cases. Here, we aimed to characterize the clinical and molecular findings and long-term outcomes in 18 patients (15 males, three females) with PG followed at a single tertiary center in Sao Paulo, Brazil. METHODS: Genetic testing for AIP and GPR101 were performed by DNA sequencing, droplet digital PCR and array comparative genomic hybridization (aCGH). RESULTS: Pathogenic variants in the AIP gene were detected in 25% of patients, including a novel variant in splicing regulatory sequences which was present in a sporadic male case. X-LAG due to GPR101 microduplication was diagnosed in two female patients (12.5%). Of interest, these patients had symptoms onset by age 5 and 9 years old and diagnosis at 5 and 15 years, respectively. X-LAG, but not AIP, patients had a significantly lower age of symptoms onset and diagnosis and a higher height Z-score when compared to non-X-LAG. No other differences in clinical features and/or treatment outcomes were observed among PG based on their genetic background. CONCLUSION: We characterize the clinical and molecular findings and long-term outcome of the largest single-center PG cohort described so far.


Assuntos
Gigantismo/genética , Gigantismo/patologia , Adolescente , Adulto , Brasil , Criança , Hibridização Genômica Comparativa , Feminino , Testes Genéticos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Imageamento por Ressonância Magnética , Masculino , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , Receptores Acoplados a Proteínas G/genética , Adulto Jovem
15.
Adipocyte ; 10(1): 21-27, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33371773

RESUMO

The Tg(Adipoq-cre)1Evdr mouse has become an important tool in adipose tissue biology. However, the exact genomic transgene integration site has not been established. Using Targeted Locus Amplification (TLA) we found the transgene had integrated on mouse chromosome 9 between exons 6 and 7 of Tbx18. We detected transgene-transgene fusion; therefore, we used droplet digital polymerase chain reaction to identify Cre copy number. In two separate experiments, we digested with BAMHI and with HindIII to separate potentially conjoined Cre sequences. We found one copy of intact Cre present in each experiment, indicating transgene-transgene fusion in other parts of the BAC that would not contribute to tissue-specific Cre expression. Cre copy number for Tg(Adipoq-cre)1Evdr mice can be potentially used to identify homozygous mice.


Assuntos
Adiponectina/genética , Proteínas com Domínio T/genética , Transgenes/genética , Tecido Adiposo/metabolismo , Animais , Expressão Gênica/genética , Integrases , Camundongos , Camundongos Transgênicos , Modelos Animais , Especificidade de Órgãos/genética , Reação em Cadeia da Polimerase/métodos , Regiões Promotoras Genéticas/genética , Proteínas com Domínio T/metabolismo
16.
Hum Mol Genet ; 29(17): 2951-2961, 2020 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-32821937

RESUMO

Mutations of the regulatory subunit (PRKAR1A) of the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA), leading to activation of the PKA pathway, are the genetic cause of Carney complex which is frequently accompanied by somatotroph tumors. Aryl hydrocarbon receptor-interacting protein (AIP) mutations lead to somatotroph tumorigenesis in mice and humans. The mechanisms of AIP-dependent pituitary tumorigenesis are still under investigation and evidence points to a connection between the AIP and PKA pathways. In this study, we explore the combined effects of Aip and Prkar1a deficiency on mouse phenotype and, specifically, pituitary histopathology. Aip+/- mice were compared with double heterozygous Aip+/-, Prkar1a+/- mice. The phenotype (including histopathology and serological studies) was recorded at 3, 6, 9 and 12 months of age. Detailed pituitary histological and immunohistochemical studies were performed at 12 months. Twelve-month old Aip+/- mice demonstrated phenotypic and biochemical evidence of GH excess including significantly elevated insulin-like growth factor 1 levels, larger weight and body length, higher hemoglobin and cholesterol levels and a higher frequency of growth plate thickening in comparison to Aip+/, Prkar1a+/- mice. Pituitary histopathology did not uncover any pituitary adenomas or somatotroph hyperplasia in either group. These results demonstrate a slow progression from elevated GH release to the formation of overt somatotropinomas in Aip+/- mice; the acromegalic phenotype of these mice is surprisingly ameliorated in Aip+/-, Prkar1a+/- mice. This highlights the complexities of interaction between the AIP and PKA pathway. Specifically targeting GH secretion rather than somatotroph proliferation may be an advantage in the medical treatment of AIP-dependent human acromegaly.


Assuntos
Acromegalia/genética , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Adenoma Hipofisário Secretor de Hormônio do Crescimento/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Acromegalia/patologia , Animais , AMP Cíclico/genética , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Hormônio do Crescimento/genética , Adenoma Hipofisário Secretor de Hormônio do Crescimento/patologia , Haploinsuficiência/genética , Humanos , Camundongos , Fenótipo
17.
Endocr Relat Cancer ; 27(8): T87-T97, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32240984

RESUMO

We recently described X-linked acrogigantism (X-LAG) in sporadic cases of infantile gigantism and a few familial cases of pituitary gigantism in the context of the disorder known as familial isolated pituitary adenomas. X-LAG cases with early onset gigantism (in infants or toddlers) shared copy number gains (CNG) of the distal long arm of chromosome X (Xq26.3). In all patients described to date with Xq26.3 CNG and acro-gigantism, the only coding gene sequence shared by all chromosomal defects was that of GPR101. GPR101 is a class A, rhodopsin-like orphan guanine nucleotide-binding protein (G protein)-coupled receptor (GPCR) with no known endogenous ligand. We review what is known about GPR101, specifically its expression profile in human and animal models, the evidence supporting causation of X-LAG and possibly other roles, including its function in growth, puberty and appetite regulation, as well as efforts to identify putative ligands.


Assuntos
Neoplasias Hipofisárias/genética , Receptores Acoplados a Proteínas G/genética , Carcinogênese , Humanos , Receptores Acoplados a Proteínas G/metabolismo
19.
Neuroendocrinology ; 110(9-10): 728-739, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32126547

RESUMO

The parasellar region, located around the sella turcica, is an anatomically complex area representing a crossroads for important adjacent structures. Several lesions, including tumoral, inflammatory vascular, and infectious diseases may affect this area. Although invasive pituitary tumors are the most common neoplasms encountered within the parasellar region, other tumoral (and cystic) lesions can also be detected. Craniopharyngiomas, meningiomas, as well as Rathke's cleft cysts, chordomas, and ectopic pituitary tumors can primarily originate from the parasellar region. Except for hormone-producing ectopic pituitary tumors, signs and symptoms of these lesions are usually nonspecific, due to a mass effect on the surrounding anatomical structures (i.e., headache, visual defects), while a clinically relevant impairment of endocrine function (mainly anterior hypopituitarism and/or diabetes insipidus) can be present if the pituitary gland is displaced or compressed. Differential diagnosis of parasellar lesions mainly relies on magnetic resonance imaging, which should be interpreted by neuroradiologists skilled in base skull imaging. Neurosurgery is the main treatment, alone or in combination with radiotherapy. Of note, recent studies have identified gene mutations or signaling pathway modulators that represent potential candidates for the development of targeted therapies, particularly for craniopharyngiomas and meningiomas. In summary, parasellar lesions still represent a diagnostic and therapeutic challenge. A deeper knowledge of this complex anatomical site, the improvement of imaging tools, as well as novel insights into the pathophysiology of presenting lesions are strongly needed to improve the management of parasellar lesions.


Assuntos
Neoplasias Encefálicas , Seio Cavernoso , Neoplasias Hipofisárias , Sela Túrcica , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Seio Cavernoso/patologia , Humanos , Neoplasias Hipofisárias/diagnóstico , Neoplasias Hipofisárias/patologia , Neoplasias Hipofisárias/terapia
20.
Endocr Relat Cancer ; 27(8): T77-T86, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32083999

RESUMO

Familial isolated pituitary adenoma (FIPA) is one of the most frequent conditions associated with an inherited presentation of pituitary tumors. FIPA can present with pituitary adenomas of any secretory/non-secretory type. Mutations in the gene for the aryl-hydrocarbon receptor interacting protein (AIP) have been identified in approximately 20% of FIPA families and are the most frequent cause (29%) of pituitary gigantism. Pituitary tumors in FIPA are larger, occur at a younger age and display more aggressive characteristics and evolution than sporadic adenomas. This aggressiveness is especially marked in FIPA kindreds with AIP mutations. Special attention should be paid to young patients with pituitary gigantism and/or macroadenomas, as AIP mutations are prevalent in these groups. Duplications on chromosome Xq26.3 involving the gene GPR101 lead to X-linked acrogigantism (X-LAG), a syndrome of pituitary gigantism beginning in early childhood; three kindreds with X-LAG have presented in the setting of FIPA. Management of pituitary adenomas in the setting of FIPA, AIP mutations and GPR101 duplications is often more complex than in sporadic disease due to early onset disease, aggressive tumor growth and resistance to medical therapy.


Assuntos
Adenoma Hipofisário Secretor de Hormônio do Crescimento/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Feminino , Adenoma Hipofisário Secretor de Hormônio do Crescimento/patologia , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...